The Elliptic Curve Discrete Logarithm Problem and Equivalent Hard Problems for Elliptic Divisibility Sequences
نویسندگان
چکیده
We define three hard problems in the theory of elliptic divisibility sequences (EDS Association, EDS Residue and EDS Discrete Log), each of which is solvable in subexponential time if and only if the elliptic curve discrete logarithm problem is solvable in sub-exponential time. We also relate the problem of EDS Association to the Tate pairing and the MOV, Frey-Rück and Shipsey EDS attacks on the elliptic curve discrete logarithm problem in the cases where these apply.
منابع مشابه
The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملElliptic divisibility sequences and the elliptic curve discrete logarithm problem
We use properties of the division polynomials of an elliptic curve E over a finite field Fq together with a pure result about elliptic divisibility sequences from the 1940s to construct a very simple alternative to the Menezes-Okamoto-Vanstone algorithm for solving the elliptic curve discrete logarithm problem in the case where #E(Fq) = q − 1.
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کامل